MTH 111, Math for Architects, Exam II, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let $f(x)=-x^{2}+8 x-1$. The slope of the tangent line to the curve at the point $(1,6)$
a. 6
b. -2
c. 5
(ii) Let $f(x)=-x^{3}+12 x+1$. Then $f(x)$ increases on the interval
a. $x \in(-\infty,-2) \cup(2, \infty)$
b. $x \in(-2,2)$
c. $x \in(-\sqrt{12}, \sqrt{12})$
d. none of the above
(iii) let $f(x)=3 e^{\left(x^{2}-2 x\right)}+4$. Then $f^{\prime}(2)$
a. 6
b. 3
c. 2
d. none of the above
(iv) Let $f(x)=x e^{(x-2)}+e^{(x-2)}+3$. Then
a. $f(x)$ has a local minimum at $x=-2$
b. $f(x)$ has a local maximum at $x=2$
c. $f(x)$ has a local minimum at $x=-1$
d. $f(x)$ has a local maximum at $x=-1$
e. none of the above
(v) Let $f(x)=-x(x-18)^{5}$. Then
a. $f(x)$ has a local maximum at $x=3$
b. $f(x)$ has a local minimum at $x=18$
c. $f(x)$ has a local maximum at $x=18$
d. $f(x)$ has a critical value when $x=-18$
e. none of the above
(vi) Given $x^{2}+y^{2}-x y=0$. Then $d y / d x=$
a. $\frac{2 y-x}{y-2 x}$
b. $\frac{y-2 x}{x-2 y}$
c. $\frac{2 x-y}{2 y-x}$
d. $\frac{y-2 x}{2 y-x}$
(vii) Given $f(x)=\sqrt{4 x-3}+\frac{1}{x}+2$. Then $f^{\prime}(1)=$
a. 4
b. 2
c. 1
d. 3
(viii) Given the curve of $f^{\prime}(x)$. Then

a. $f(x)$ is decreasing on the the interval $(1,2)$
b. $f(x)$ is decreasing on the interval $(-\infty, 0)$
c. $f(x)$ is increasing on the interval $(-\infty, 2)$
d. $f(x)$ is decreasing on the interval $(-\infty, 0)$
e. above, there are more than one correct answer.
(ix) Using the curve of $f^{\prime}(x)$ above. Then
a. $f(x)$ has a local min. value at $x=0$ but no local max. values.
b. $f(x)$ has neither local min. values nor local max. values
c. $f(x)$ has a local max. value at $x=2$
d. $f(x)$ has a local min. value at $x=0$ and a local max. value at $x=1$.
(x) Using the curve of $f^{\prime}(x)$ above. Then
a. the curve of $f(x)$ must be concave down on the interval $(0,1)$.
b. the curve of $f(x)$ must be concave up on the interval $(2, \infty)$
c. the curve of $f(x)$ must be concave down on the interval $(-\infty,-1)$
d. above, there are more than one correct answer.
(xi) Given $f^{\prime}(3)=f^{\prime}(-1)=f^{\prime}(6)=0, f^{(2)}(2)=4, f^{(2)}(-1)=-5$, and $f^{(2)}(6)=0$ (note that $f^{(2)}$ means the second derivative of $f(x)$). Then
a. $f(x)$ has neither local min. value nor local max. value at $x=6$.
b. $f(x)$ has a local max. value at $x=3$
c. $f(x)$ has a local max. value at $x=-1$.
d. None of the above
(xii) Given x, y are two positive real numbers such that $x+2 y=26$ and $x y$ is maximum. Then $x y=$
a. 52
b. 84.5
c. 78
d. 169
e. none of the above
(xiii) What is the area of the largest rectangle that can be drawn as in the figure below (note $f(x)=-0.5 x+4$ and $g(x)=0.5 x-4)$?

a. 16
b. 32
c. 64
d. none of the above
(xiv) Given the points $A=(2,4)$ and $B=(0,6)$. What is the point c on the x-axis so that $|A C|+|C B|$ is minimum?
a. $(2,0)$
b. $(1.2,0)$
c. $(1.5,0)$
d. $(1,0)$
e. None of the above
(xv) A particle moves on the curve $4 x^{2}+6 y^{2}=22$. If the x-coordinates increases at rate $0.3 /$ second, what is the rate of change of y when the particle reaches $(2,1)$?
a. 0.4
b. -0.4
c. -0.3
d. none of the above
$\left(x\right.$ xi) Given $f(x)=(4 x-7)^{11}, f^{\prime}(2)=$
a. 11
b. 44
c. 4
(xvii) Given $f(x)=\ln \left[\frac{5 x-14}{3 x-8}\right]$. Then $f^{\prime}(3)$
a. 2
b. $\frac{5}{3}$
c. 15
d. None of the above
(xviii) Given $(-4,2),(0,0),(6,8)$ are vertices of a triangle. The area of the triangle is
a. 44
b. 22
c. $\sqrt{44}$
d. $\sqrt{22}$
e. None of the above.
(xix) $\lim _{x \rightarrow 2} \frac{e^{(3 x-6)}+x-3}{x^{3}-x^{2}-4}=$
a. 0.5
b. 0
c. 0.25
d. none of the above
(xx) $\lim _{x \rightarrow 3} \frac{x^{2}-18}{(x-3)^{2}}=$
a. 0
b. $-\infty$
c. ∞
d. DNE (does not exist)
e. -9

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

