MTH 111, Math for Architects, Exam II, Spring 2014

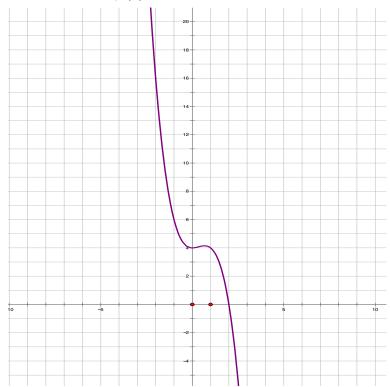
Ayman Badawi

QUESTION 1. (i) Let $f(x) = -x^2 + 8x - 1$. The slope of the tangent line to the curve at the point (1,6)

- a. 6
- b. -2
- c. 5
- (ii) Let $f(x) = -x^3 + 12x + 1$. Then f(x) increases on the interval
 - a. $x \in (-\infty, -2) \cup (2, \infty)$
 - b. $x \in (-2, 2)$
 - c. $x \in (-\sqrt{12}, \sqrt{12})$
 - d. none of the above
- (iii) let $f(x) = 3e^{(x^2-2x)} + 4$. Then f'(2)
 - a. 6
 - b. 3
 - c. 2
 - d. none of the above
- (iv) Let $f(x) = xe^{(x-2)} + e^{(x-2)} + 3$. Then
 - a. f(x) has a local minimum at x = -2
 - b. f(x) has a local maximum at x = 2
 - c. f(x) has a local minimum at x = -1
 - d. f(x) has a local maximum at x = -1
 - e. none of the above
- (v) Let $f(x) = -x(x-18)^5$. Then
 - a. f(x) has a local maximum at x = 3
 - b. f(x) has a local minimum at x = 18
 - c. f(x) has a local maximum at x = 18
 - d. f(x) has a critical value when x = -18
 - e. none of the above
- (vi) Given $x^2 + y^2 xy = 0$. Then dy/dx =
 - a. $\frac{2y-x}{y-2x}$
 - b. $\frac{y-2x}{x-2x}$
 - c. $\frac{2x-y}{2y-x}$
 - d. $\frac{y-2x}{2y-x}$

2

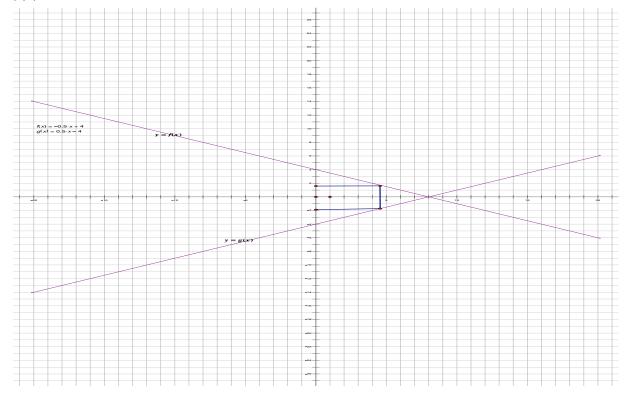
- (vii) Given $f(x) = \sqrt{4x 3} + \frac{1}{x} + 2$. Then f'(1) =
 - a. 4
 - b. 2
 - c. 1
 - d. 3
- (viii) Given the curve of f'(x). Then



Ayman Badawi

- a. f(x) is decreasing on the the interval (1,2)
- b. f(x) is decreasing on the interval $(-\infty, 0)$
- c. f(x) is increasing on the interval $(-\infty, 2)$
- d. f(x) is decreasing on the interval $(-\infty, 0)$
- e. above, there are more than one correct answer.
- (ix) Using the curve of f'(x) above. Then
 - a. f(x) has a local min. value at x = 0 but no local max. values.
 - b. f(x) has neither local min. values nor local max. values
 - c. f(x) has a local max. value at x = 2
 - d. f(x) has a local min. value at x = 0 and a local max. value at x = 1.
- (x) Using the curve of f'(x) above. Then
 - a. the curve of f(x) must be concave down on the interval (0,1).
 - b. the curve of f(x) must be concave up on the interval $(2, \infty)$
 - c. the curve of f(x) must be concave down on the interval $(-\infty, -1)$
 - d. above, there are more than one correct answer.
- (xi) Given f'(3) = f'(-1) = f'(6) = 0, $f^{(2)}(2) = 4$, $f^{(2)}(-1) = -5$, and $f^{(2)}(6) = 0$ (note that $f^{(2)}$ means the second derivative of f(x)). Then
 - a. f(x) has neither local min. value nor local max. value at x = 6.
 - b. f(x) has a local max. value at x = 3
 - c. f(x) has a local max. value at x = -1.
 - d. None of the above

- (xii) Given x, y are two positive real numbers such that x + 2y = 26 and xy is maximum. Then xy = 26
 - a. 52
 - b. 84.5
 - c. 78
 - d. 169
 - e. none of the above
- (xiii) What is the area of the largest rectangle that can be drawn as in the figure below (note f(x) = -0.5x + 4 and g(x) = 0.5x 4)?



- a. 16
- b. 32
- c. 64
- d. none of the above
- (xiv) Given the points A = (2,4) and B = (0,6). What is the point c on the x-axis so that |AC| + |CB| is minimum?
 - a. (2, 0)
 - b. (1.2, 0)
 - c. (1.5, 0)
 - d. (1, 0)
 - e. None of the above
- (xv) A particle moves on the curve $4x^2 + 6y^2 = 22$. If the x-coordinates increases at rate 0.3/second, what is the rate of change of y when the particle reaches (2,1)?
 - a. 0.4
 - b. -0.4
 - c. -0.3
 - d. none of the above
- (xvi) Given $f(x) = (4x 7)^{11}$, f'(2) =
 - a. 11
 - b. 44
 - c. 4
 - d. non of the above

- (xvii) Given $f(x) = ln[\frac{5x-14}{3x-8}]$. Then f'(3)
 - a. 2
 - b. $\frac{5}{3}$
 - c. 15
 - d. None of the above
- (xviii) Given (-4,2), (0,0), (6,8) are vertices of a triangle. The area of the triangle is
 - a. 44
 - b. 22
 - c. $\sqrt{44}$
 - d. $\sqrt{22}$
 - e. None of the above.
 - (xix) $\lim_{x\to 2} \frac{e^{(3x-6)}+x-3}{x^3-x^2-4} =$
 - a. 0.5
 - b. 0
 - c. 0.25
 - d. none of the above
 - (xx) $\lim_{x\to 3} \frac{x^2-18}{(x-3)^2} =$
 - a. 0
 - b. $-\infty$
 - c. ∞
 - d. DNE (does not exist)
 - e. -9

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com